Lab 1 - Session 2

Daniel Perdices
May 13, 2024

|
U ﬁ- Universidad Auténoma
de Madrid

Lab 1 - Session 2 (Daniel Perdices)

What are we going to do today?

Recap of Wireshark
Recap of Python
Advanced Python |
Self-assessment

Material

Lab 1 - Session 2 (Daniel Perdices) 2

Recap of Wireshark

Lab 1 - Session 2 (Daniel Perdices)

How to start Wireshark?

Run in a terminal
$ sudo wireshark # or wireshark-gtk

= Permission error when starting live capture if you open it
without sudo.

= Remember: <TAB> is your BFF in bash.

Lab 1 - Session 2 (Daniel Perdices) 4

Visualization filter

The filters on the top part of the screen

Fle Edt View Go Captwe Andhze Statistics Telephony Wireless Tools Help

W& ® RECIQemEF & S = Q Q F
W el B ~) Boresson..
Mo, Time Source Destination protocol _ Length nfo
1042 -3676.527107 10.68.8.209 10.68.55.100 DNS 76 Standard query @xd265 A g.live.com
1044 -3676.505241 10.68.55.100 10.68.8.209 DNS 119 Standard query response @xd265 A g.live.com CNAME g.msn.com.nsatc.net A 52.142.114.176
1685 -3675.987982 10.68.8.209 10.68.55.100 DNS 76 Standard query x1847 A oneclient.sfx.ms
1688 -3675.953616 10.68.55.100 10.68.8.209 DNS 170 Standard query response @x1847 A lient.sf CNAME lient.sf dgekey.net CNAME
1226 -3673.776523 10.68.8.209 10.68.55.100 DNS 93 Standard query @x99@ A v1@.vortex-win.data.microsoft.com
1227 -3673.757821 10.68.55.100 10.68.8.209 DNS 203 Standard query response @x9f98 A v1@.vortex-win.data.microsoft.com CNAME v1e-win.vortex.d:
1292 -3670.754548 10.68.8.209 10.68.55.100 DNS 81 Standard query @x7df3 A outlook.office365.com
1293 -3670.735454 10.68.55.100 10.68.8.209 DNS 207 Standard query response @x7df3 A outlook.office365.com CNAME outlook.ha.office365.com CNAM
1614 -3667.215912 10.68.8.209 10.68.55.100 DNS 76 Standard query @xe486 A go.microsoft.com

Figure 1: Visualization filter (green bar on top of packet list)
Characteristics
= Flexible
= They can be undone
= Only inside Wireshark (or tools from same devs)

= Slow
Lab 1 - Session 2 (Daniel Perdices) 5

Visualization filter

Examples:
= All ARP traffic

= All packets with TCP source port < 10000
= First ten packets

= All traffic going to or coming from address 10.0.0.1

Lab 1 - Session 2 (Daniel Perdices) 6

Capture filter

The filters when you configure a network interface

Wielcome to Wireshark

Capture

v | Al ket st -

Figure 2: Capture filter

Characteristics
= |Less flexible.

= You cannot “uncapture” what it has not been captured.
= Format is widely accepted. See BPF (Berkeley Packet Filter)

= Fast, they compile to assembly code running in the kernel
Lab 1 - Session 2 (Daniel Perdices) 7

Capture filter

Examples:
= All ARP traffic

= All packets with TCP source port = 22
= TCP and UDP traffic

= All traffic going to or coming from address 10.0.0.1

Lab 1 - Session 2 (Daniel Perdices) 8

Recap of Python

Lab 1 - Session 2 (Daniel Perdices)

II%HHH!EiHHHH!II

def gradeInSpanish(grade, distinction=False,
recommendation=False) :

if grade < 5:

anot_grade = "Suspenso"
elif grade < 7:

anot_grade = "Aprobado"
elif grade < 9:

anot_grade = "Notable"

elif distinction and recommendation:
anot_grade = "M. Honor"

else:
anot_grade = "Sobresaliente"

return anot_grade

Lab 1 - Session 2 (Daniel Perdices) 10

II%HHH!EiHHHH!II

for i in range(10+1):
print(gradeInSpanish(i))

= What's the first value of i? And the last one?
Transform this code to save the result into a list instead of

printing it.

Lab 1 - Session 2 (Daniel Perdices) 11

a=1

al = 0x01

a2 = 0b01

b=1.0

c="1"

d = True

e = None

f = 1+2j # Sorry, I know you already

passed analog circutts... :)

Lab 1 - Session 2 (Daniel Perdices) 12

Data structures

= Remember: types are not enforced

[1,2,"3"] # list
b = {1,2,"3",3} # set (uniqueness)
(1,2,"3") # tuple (unmodifiable)

[
I

= Dictionaries are extremely useful:
d = {1:"foo", 2: "bar"}

= What happens if you iterate a, b or ¢? And d?
= How do you sort an Iterable?

Lab 1 - Session 2 (Daniel Perdices) 13

Advanced Python |

Lab 1 - Session 2 (Daniel Perdices)

14

How to convert from integer to bytes?

First option (the one | personally don't like)
ethertype = struct.pack("!H", value)
Problems:

= Harder to read

= Requires to indicate network order (big endian)

= Requires "B"”, “"H", “I", or “Q" for the size (1, 2, 4, 8 bytes
respectively)

Advantage:
= It allows you to do multiple conversions at once:

random_bytes = struct.pack("!BH", valuel,value2)

Lab 1 - Session 2 (Daniel Perdices) 15

How to convert from integer to bytes?

Second option (the one | personally like)

parenthestis are required i1f it s a literal

they are not 2f 4t's a wvartable

ethertype = (value).to_bytes(2, # size of the number
order="big") #big=network

Advantages:

= Easier to read

= Size and order are explicitly declared and human-readable
Problem:

= |t does not allow you to do multiple conversions at once:

random_bytes = valuel.to_bytes(1l) + \

Lab 1 - Session 2 (Daniel Perdices) value2. to_bytes (2 s 0rd€r="big") 16

How to convert from bytes to integer?

First option (the one | personally don't like)
value = struct.unpack("!H", ethertype)
Problems:

= Harder to read

= Requires to indicate network order (big endian)

= Requires "B"”, “"H", “I", or “Q" for the size (1, 2, 4, 8 bytes
respectively)

Advantage:
= It allows you to do multiple conversions at once:

(valuel,value2) = struct.unpack("!BH", random_bytes)

Lab 1 - Session 2 (Daniel Perdices) 17

How to convert from bytes to integer?

Second option (the one | personally like)

value = int.from_bytes(ethertype, #size is len(ethertype)
order="big") #big=network

Advantages:

= Easier to read

= Size and order are explicitly declared and human-readable
Problem:

= |t does not allow you to do multiple conversions at once:

valuel = int.from_bytes(random_bytes[0:1], order="big")
value2 = int.from_bytes(random_bytes[1:], order="big")

Lab 1 - Session 2 (Daniel Perdices) 18

Test: do you really know python?

def broadcastEthAddress():
TODO
return bytes()

Lab 1 - Session 2 (Daniel Perdices) 19

Test: do you really know python?

def int2hex():
TODO

return ""

def bytes2hex():
TODO

return ""

Lab 1 - Session 2 (Daniel Perdices) 20

Self-assessment

Lab 1 - Session 2 (Daniel Perdices)

21

What you uld have done by today

= Basic Wireshark

= Basic concepts

= Viz filter vs capture filter

= Open interfaces, open/save traces
= Basic Python

= Understand the examples

= Understand our material

Lab 1 - Session 2 (Daniel Perdices) 22

What you should have done by today

= Linux (either baremetal install or VM)

= apt update && apt install libpcap-dev
= Read Assignment 1

= What are you being asked for?

= What is the material provided?

= How are you going to be evaluated?

= How do you know that what you are doing is right?
= Run program practical.py

Lab 1 - Session 2 (Daniel Perdices) 23

What you should have done by next week

= Questions about Wireshark

= Lab 1 test might include questions regarding Wireshark
= Questions about Python

= Lab 1 test might include questions regarding Python3
= Questions about the assignment

= Lab 1 test will include questions regarding the assignment and
the libpcap

A first draft of the assignment

Lab 1 - Session 2 (Daniel Perdices) 24

Material

Lab 1 - Session 2 (Daniel Perdices)

25

Where are these slides?

github.com/dperdices/redes1-1391-2022
= Source code of this slides (in markdown)
= Slides in PDF
If you want a completed version or find any mistakes,
= Fork the repo
= Complete it / Fix it yourself
= Make a PR

= Wait for my approval (or comments)

Lab 1 - Session 2 (Daniel Perdices) 26

	Recap of Wireshark
	Recap of Python
	Advanced Python I
	Self-assessment
	Material

